

Format Tonight:

Goals for this Workshop

Gentle introduction to Python and Django REST Framework

Lab Exercise Part 1

How SafeChain uses Blockchain

Gentle introduction to Ethereum blockchain and Web3.py

Lab Exercise Part 2

Finish the prework ?
[Now’s a good time to run through those steps in the background if not]

Goals for Tonight

1. Build a Simple API
2. Talk to Ethereum mainnet

3. Collect your Columbus token
4. ???

5. Profit

Let’s talk Python

#1 -- Syntactic White Space
Where you’re used to seeing:

function foo(a) {
 console.log(“Hello”);
}

if (a == b) {
 console.log(“True”);
}

This is what to expect in Python:

def foo(a):
 print(“Hello”)

if a == b:
 print(“True”)

No curly brackets to set scope nor semicolons to end lines

But… colons and indentation matter a lot

No declaration:

Java:
String foo = “Bar”;

Python:
foo = “Bar”

Variables can be reassigned to new types:

a = “the answer to life the
universe and everything”
a = 42

#2 -- Strongly-, Implicitly- and Dynamically-typed
But types still matter:

b = 2 + “2”

^^ will throw a TypeError!

#3 -- Always by reference, all the time
No pointers! But be careful…

Passing by reference can also make it easy to
unintentionally modify an object passed from
elsewhere.

#4 -- It’s [usually] interpreted
Pros:

● No separate compilation step

● Easy to interactively debug

● Fairly portable

Cons:

● Can be slower than true compiled
languages

On to Django [REST Framework]

Django, out of the box
URLs/Routes

Models

Allow you to work with your database in an
object-oriented fashion without touching SQL.

Views

Define how a given route behaves.

Templates

Define how a given route appears to the user.

● Closely resembles the MVC pattern that
become popular in the mid/late 2000s.

● Great for quickly building dynamic,
server-side rendered applications.

● Historically, popular for building news and
other content sites.

● Can easily use just about any Python
package within your Django app

● Good bones but not quite ideal for building
modern client-rendered apps or RESTful
APIs

Django REST Framework
Replaces Views with ViewSets

Standardized behavior to match RESTful HTTP
verbs -- GET, PUT, POST, DELETE, etc.

Easily extend behavior with nested list and detail
routes.

Replaces Templates with Serializers

Automatically accepts or generates
standards-compliant JSON/XML/other output
based on your model fields.

Ability to easily include/exclude fields.

In short, makes it just as easy to build APIs as
Django makes it to build server-side rendered
applications.

What’s in a route?

Route ViewSet Serializer Model

What’s in a route?
Route

router.register(r'wallets', core_views.WalletViewSet)

ViewSet

class WalletViewSet(viewsets.ModelViewSet):

 queryset = Wallet.objects.all().order_by('id')

 serializer_class = WalletSerializer

Serializer

class WalletSerializer(serializers.ModelSerializer):

 class Meta:

 model = Wallet

 fields = ('id', 'label', 'address')

Model

class Wallet(models.Model):

 label = models.CharField(max_length=255)

 address = models.CharField(max_length=255)

Questions?

https://taliotech.github.io/django-meets-blockchain-site/part-1/instructions/

